Basic Concepts of Enriched Category Theory

نویسنده

  • G. M. Kelly
چکیده

Although numerous contributions from divers authors, over the past fifteen years or so, have brought enriched category theory to a developed state, there is still no connected account of the theory, or even of a substantial part of it. As the applications of the theory continue to expand - some recent examples are given below - the lack of such an account is the more acutely felt. The present book is designed to supply the want in part, by giving a fairly complete treatment of the limited area to which the title refers. The basic concepts of category theory certainly include the notion of functor-category, of limit and colimit, of Kan extension, and of density; with their applications to completions, perhaps including those relative completions given by categories of algebras for limit-defined theories. If we read 'V-category' for 'category' here, this is essentially the list of our chapter-headings below, after the first chapter introducing V-categories. In fact our scope is wider than this might suggest; for what we give is also a selfcontained account of basic category theory as described above, assuming as prior knowledge only the most elementary categorical concepts, and treating the ordinary and enriched cases together from Chapter 3 on.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$L$-enriched topological systems---a common framework of $L$-topology and $L$-frames

Employing the notions of the strong $L$-topology introduced by Zhangand the $L$-frame introduced by Yao  and the concept of $L$-enrichedtopological system defined in the present paper, we constructadjunctions among the categories {bf St$L$-Top} of strong$L$-topological spaces, {bf S$L$-Loc} of strict $L$-locales and{bf $L$-EnTopSys} of $L$-enriched topological systems. All of theseconcepts are ...

متن کامل

Convergence and quantale-enriched categories

Generalising Nachbin's theory of ``topology and order'', in this paper we   continue the study of quantale-enriched categories equipped with a compact   Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces   with ultrafilter-quantale-enriched categories, and show that the presence of a   compact Hausdorff topology guarantees Cauchy completeness and (suitably   defined) ...

متن کامل

A New Approach to Quantitative Domain Theory

This paper introduces a new approach to the theory of Ω-categories enriched by a frame. The approach combines ideas from various areas such as generalized ultrametric domains, Ω-categories, constructive analysis, and fuzzy mathematics. As the basic framework, we use the Wagner’s Ω-category [18,19] with a frame instead of a quantale with unit. The objects and morphisms in the category will be ca...

متن کامل

Verdier’s Localization Theorem

Category Theory is an area of mathematical study that examines abstractly the properties of mathematical concepts and constructs and the interactions between them, so long as these constructs satisfy certain basic requirements. For a long time, category theory also went by the name of “general abstract nonsense.” Today, category theory is taken more seriously and has evolved into a field of stu...

متن کامل

Enriched Factorization Systems

In a paper of 1974, Brian Day employed a notion of factorization system in the context of enriched category theory, replacing the usual diagonal lifting property with a corresponding criterion phrased in terms of hom-objects. We set forth the basic theory of such enriched factorization systems. In particular, we establish stability properties for enriched prefactorization systems, we examine th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005